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LINEAR STABILITY OF SELF-SIMILAR FLOW:
8. IMPLODING CYLINDRICAL AND SPHERICAL SHOCKS

IN THE C-C..W APPROXIMATION

I. Introduction

One of the critical limitations to achieving high compression in a

spherical implosion is the degree of symmetry that can be maintained. This

in turn has important implications for target fabrication techniques and

for laser or other driver designs,since it establishes the tolerances

required in the symmetry of these components.

C An important issue for understanding imploding systems is the stability

of a converging shock wave. This shock wave might be used, for instance,

not only to compress the fuel, but also to provide the heating required

to create a central ignition region. The final temperature achieved will

depend on how nearly spherical the shock wave remains during the collapse

process and the shape of the shock at the time of reflection.

A certain inherent stability of a shock wave results from the well-

known fact that a shock wave with a smaller radius of curvature advances

faster than one with a larger radius of curvature. Thus, the part of a

perturbed shock front that initially lags behind will accelerate more

rapidly due to its smaller radius of curvature and so will tend to catch up

with the remainder of the shock wave. However, the perturbation may be un-

able to overtake the main shock, which is accelerating because of convergence,

or it may be overdriven, i.e., the perturbation may overshoot the stable position.

In order to discuss stability, it is necessary to define what is meant

by stable (or unstable) behavior. The usual definition of stability in
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terms of a growing or decaying mode amplitude does not adequately describe

the situation in imploding systems. For example, the amplitude may not

tend to zero as fast as the average radius, or the collapse time may be

of the order of the period of oscillation of the mode. A more meaningful

number for small-amplitude perturbations is the rate of growth (or decay)

of the relati-e perturbation amplitude, i.e., the ratio of the perturbation

amplitude to the radius of the zero-order symmetric collapse solution

(Bernstein and Book, 1978).

Large initial perturbation amplitudes may not decay

in the same way as small-amplitude perturbations (Fong and Ahlborn, 1979).

One can define a radial instability in terms of the maximum deviation

of the shock radius from the average radius (JR-R av /R ae). Another

kind of instability (kink instability) occurs when a small portion of

the shock necks off from the central region (Fig. 1). In general, we

caanot speak of an imploding shock as being stable or unstable in a clear-

cut sense. Rather, we can ask whether it retains an acceptable degree

of symmetry after having collapsed to a volume sufficiently small for

practical purposes.

We have developed an analytic and computational model to investigate

the stability of converging shock waves in cylindrical and spherical

geometry. This represents an extension to smaller radii of the work of

Fong and Ahlborn (1979) on the linear stability problem. The model equations

are described in the next section, followed by a linearized analytic solution,

an account of the numerical model, a comparison of the numerical and analytic

solutions, an analysis of nonlinear behavior,and an extension to problems

with a varying dexisity in front of the shock.
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II. Model Equations

The motion of a converging shock wave can be computed with great

accuracy by considering only changes in the physical variables across

the shock front, ignoring the fluid motion behind the shock surface. The

velocity of a shock front in a motionless undisturbed medium is normal to

the front.It may therefore be treated as a locally one-dimensional motion

in a channel whose boundaries are determined by the trajectories of the

shock front. These trajectories form imaginary ray tubes whose cross-

sectional area is related to the Mach number by an equation derived by

Chester (1954), Chisnell (1955), and Whitham (1957) (the C-C-W approxima-

tion). The equation may be found by substituting into the compatibility

equation for the characteristic moving in the direction of shock propagation

the fluid quantities determined by the Rankine-Hugoniot relations across

the shock. Whitham (1958) has shown that this procedure, the simplest

method of deriving the C-C-W approximation, is equivalent to solving the

complete fluid equations while ignoring the characteristics which travel

away from the shock and are reflected back toward it. For this reason,

it is most accurate for accelerating shocks,where the reflected charac-

teristics are unable to catch up with the shock.

The result of this model is an equation for the Mach number M of the

shock as a function of the cross-sectional area A of the ray tube:

X( )MdM + __ o, (1)

where 2 o2
X(M) - (2+I+l/M2) (+ (2)

and 2 (y-l)M + 2 (3)

2M 2 - (Y-1)
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where y is the usual adiabatic index. The cross-sectional area of the

ray tube may be expressed in terms of the shock front velocity by the

kinematic relations

A--A n. (n x V) x v (4)

n -I nn) -(n xv) xv; (5)

r - n v, (6)

where C) denotes a derivative with respect to time, n is the unit vector

normal to the shock front and r is the surface location.

In numerical integration, Eqs. (1) and (5) are used to propagate

the magnitude and direction, respectively, of the shock front velocity in

terms of time, substituting A from Eq. (4). Equation (6) then advances

the shock front position by integration of the velocity. For small per-

turbations about symmetric (cylindrical or spherical) shocks, however,

solutions can be obtained analytically.
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III. Linearized Analytic Solutions

Since all collapsing shocks will eventually become strong, it is

useful to analyze the strong shock limit M>>I. If we assume that the

sound speed ahead of the shock is constant, in addition to being small,

then Eqs. (l)-(3) reduce to

A/A -- X /v , (7)

where

v M/a (8)

and
y +2 + (2y)h (9)
Y (Y-1

Using familiar vector identities we have

n - (n x x v - -v V n (10)

Thus usingEqs. (4) and (7)-(10) we have

(W/v) -V • n - n x (n x V) n , (11)

which only involves tangential derivatives of n.

We first look at the zeroth-order symetric solution,
-v (t); (12)

n~ - r; (13)

0~ -0; (14)

W - (r/r) = air, (15)
where a = 1 (2) for cylindrical (spherical) geometry. Equations

(12)-(15) can be rewritten as

d d r drr (dr )=- - r~ dr t n r . (16) *

Integrating this once yields

f r 1/X M const, (17)

and finally r-R (wt)x (X+00 (18)

where R and w are constants.
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Suppose we now linearize the equation by assuming n = n 0
+ n 1,v=v0 v 1

r= 0 + C(ro, t),where the subscript 0 refers to the zeroth-order symmetric

solution, and the subscript 1 refers to a small perturbation about

this solution. From Eq.( 5 ) we have

S  (n x V) x (19)

Expanding the gradient operator

V =V 0 - (70  . , (20)

from Eq. (11) we have to first order

(-VV 0  - (V0 7) (V0 0 )" (21)

From Eq. (19) after some manipulation we have

!7 1 VO - (I-n n) VO (n 0 " ) (22)

Here use has been made of the fact that n 0 !r and the fact that

VOn0 = VO(r O) / (I-00 /r0  (23)

is a symmetric dyad. From Eq. (6) we have

=0 vI +n 1 v0  (24)

Hence taking the dot product with n0 yields

o * = (no )' V (25)

Thus Eq. (21) can be written as

_-Z ) = O [n,- ' VO O]+ E " V no (26)

V 0  [(1 - n V (n0  )] + - V o.

Now if we expand the perturbation in either cylindrical or spherical

harmonics by assuming a sum of linearly independent terms of the form

no , = :(t) cos (mP) (cylindrical) (27)

;(t) P£ cos (mi) (spherical), (27')(e)
each of which can be treated independently, and define the mode-number-

dependent coefficient of the Laplacian by

7



2 (cylindrical) (28)
Qinm

2.(£+Z) (spherical), (28')

Eq. (26) becomes

-f(Q--a)/r (29)

Now using
V0 dr (30)

0
we have

vo drOr rQ . (31)
0 0r 0r r

From Eq. (18) we have

dn v0
-=--(32)

dr0  Xr0

and after a little algebraic manipulation we get

d 2  + a Ai + Q - a 0. (33)

r 0 + r0 dr0  r 0 2

We now seek a solution of the form C - r 0  where $ is in general

a complex number which satisfies the indicial equation

or 8(0-1) + 01 $ + Q - a - 0, (34)

or

_ ( -- {- + [(X_+*) 2 - 4XQ]I }  (35)

Since we seek the ratio of the amplitude of the disturbance to that

of the zeroth order s6lution we look at

/ro rB-i = ro{-(X+a) + [(X+a)2  4X ] } /2 X (36)

Since

r0 - t (37)
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/r - f (X+) 2 - 4XQ1 /2(X+a) (38)

For the lowest-order mode numbers a-i is real and negative,

indicating that the disturbance is geometrically unstable:

X + 0 (39)

for Z=O (spherical coordinates) or m=O (cylindrical coordinates), and

S- 1= - -1 (40)

for Zfl (spherical coordinates) or mfl (cylindrical coordinates).

For all mode numbers greater than unity a is complex, and there is
*- (X+ct)I(2X)ana

a factor growing with a power-low dependence - r0  and a
1

factor which is oscillatory in Zn r0 with a frequency w = 1 [4XQ - (X+ct)]

The real part is always negative and independent of mode number, while

the oscillatory part depends on the mode number:

/r %r 2 X - X P (41)

where

[4XQ (X+a) 2 ]

2 (X+) (42)

In Fig. 2 we show the frequency in Zn t for the spherical harmonic

perturbation as a function of mode number for two different ratios of

specific heat, Y = 7/5 and y - 5/3. Figure 3 shows the ratio r/r between
0

successive minima in the perturbation amplitude as it oscillates during

collapse. The ratio may be chosen so that at some prescribed degree of

compression the perturbation amplitude is a minimum.

9



0 C

Lf) a

0 C

Clf,

100



100

* CYLINDRICAL
0

0

SPHERICAL/
z 10

U.S

0

1 10 100
MODE NUMBER n

Fig. 3 - Compression ratio between successive minima in perturbation amplitude during
perturbed shock collapse as a function of mode number.



IV. Numerical Integration

In order to assess the importance of nonlinear effects on the mode

amplitude, the full nonlinear model equations were integrated with a code

similar to that of Fong and Ahiborn (1979). The code advances the equations

of motion of the shock front

= v ; (43)

dM M 2 -(1

a = X(M) MA ' (44)

either in plane coordinates (for cylindrical collapse viewed in a plane

through the axis) or in cylindrical coordinates (for spherical collapse

viewed in the equatorial plane).

The equation for the cross-sectional area is not integrated directly,

but areas are taken from the kinematics of the integrated ray tubes. A

second-order-accurate space-and-time-centered algorithm is employed to

advance the grid locations and Mach numbers. Thus the problem of computing

the shock shape is reduced to integrating a set of ordinary differential

equations for the trajectories of a finite number of grid points located

along the shock front, and for their associated time-dependent Mach numbers.

The integration is subject to a timestep limit analogous to the Courant

condition for the one-dimensional fluid equations. This algorithm allows

for the propagation of so-called shock-shocks (discontinuities in the slope

and Mach number of the shocks predicted by the Whitham theory) in either

direction, since the scheme is centered and symmetric. The equations

for the shock surface are analogous to the one-dimensional Lagrangian

equation of motion, where the shock position takes the place of the fluid

position, the ray tube area takes the place of fluid density, and the Mach

12



number takes the place of the fluid velocity. Thus many of the properties

of one-dimensional motion, e.g., disturbances traveling along characteristic

directions and nonlinear wave front steepening, show up in the shape

of the shock surface.

It was found necessary to redistribute the grid points to prevent

unacceptably short timesteps as the mesh points crowd together near the

shock-shock regions. The algorithm diffuses the grid points a small

amount parallel to the shock front in such a way as to make the distances

between points more nearly equal. This diffusion plays a role similar

to that of an artificial surface tension at interfaces.

To test the accuracy of the numerical procedure described above, we

compared the results of the calculation with those predicted by the self-

similar solutions for the collapse of an infinitely strong shock due to

Guderley (1942). The self-similar solution predicts a shock position given

yR C (-t)7 with 7 - .717 for a y = 1.4 gas according to Guderley.

This gives a shock Mach number as a function of radius

=-7 C (-t) 171 R (-l)/,1 (45)

Thus

M R ("-l)/7 . R 3947 (46)

The C-C-W approximation for large M gives

dA 2 dR 2 1- 2) (2+l) MW + 1 dM
A R Y+l C - i M (47)

with

a =[ 2y

This yields
2'ya

M R (2o+l) (ya+l) -.3941 (8)
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The exponents agree with the analytic Guderley solution to within 0.0015.

In Fig. 4 we show the results of these models for the spherical convergence

of a shock with an initial Mach number of 57 at a radius of 0.112 cm.

The solid line is the analytic result of the Guderley solution. The

triangles are the numerical results of the C-C-W approximation using the

code described above with 25 mesh points around a circle in cylindrical

coordinates (describing a spherical implosion). Comparing the results

along the axis with those perpendicular to the axis, we see that the shock

remains spherical to better than 1% during the entire implosion and the

Mach number reproduces the Guderley solution with less than 0.5% error.

14
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Fig. 4 - Comparison of analytic and numerical integration for self-similar spherical shock

collapse (Guderley problem).
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V. Comparison of Results of Linearized Model and Nonlinear Intezration

In Fig. 5 and 6 we show the results of the analytic and numerical

integration for mode numbers 2, 4, and 8 for cylindrical and spherical

collapse. The solid lines are the analytic formulas and the circles show

the numerical results. To insure beginning in the linear regime the initial

-3amplitude of the modes was chosen such that C/ro 10- . Since the system

of equations is second order in the perturbed shock location, both the

amplitude and the velocity of perturbation must be specified. For these

cases the velocity was chosen to be zero. This then uniquely determines

the phase of the oscillation. The phase angle between the amplitude and

the velocity is determined by the mode number and the specific heat ratios:

- tan1I ~2X-cap (49)

Agreement appears very good until the mode amplitude becomes greater

than a few percent. At this time nonlinear effects which can generate modes

other than primary one drive the solution away from the linear result.

Nonlinear steepenink of the wave front generates higher order modes which begin

to dominate the solution. Ir Fig. 7 we can see the form this takes. This

figure shows the successive wave front shapes for an X - 8 spherical har-

monic perturbation initialized with a large initial amplitude in order to

show the effects of a large compression. As the shock collapses, the

wave fronts beginx to form cusplike-shapes in the region where the shock

is left behind. For sufficiently large amplitudes a true cusp forms and

the simple shock front no longer exists. It is replaced by a system of

reflecting shock waves (see Fig. 8), which, however, are not treated in

the present model. When this occurs a large portion of the shock energy

can be left behind in the reflected shock system, thus decreasing the

16



compressional effect of the imploding shocks. Solutions of this type are

referred to below as having kink instabilities in the shock front.

17



-0 0 0.

Fig. - Cmparson f anaytic(sold lies) numr.a

inegaio (pn irls)fr axmm erubaio mpi

tude as functio of radis for clndrical shc olas

attredfeetmd ubr.Dvaina ml ai

i du to nompinaro ffcsni analytic smoie)adnuerca

18



102

40o 40l2 ro 0l

S PX4 44IC *4

'0

o SPEICAL

IPMCA

Fig. 6 - Comparison of analytic (solid lines) and numerical
results (open circles) for spherical shock collapse for mode
numers 2, 4, and 8.

19



.0 .

oU

*r

GcU

o

tut'S
b. C

20~



W L

0 cj

Ii I

21



VI. Nonlinear Modeling

In order to investigate more carefully how these kinks form and

propagate, we look at perturbation in the form of a simple spherical

cap of radius smaller than the initial mean shock radius. This shock cap

intersects the main shock with an angle 6 at a colatitude 8, as shown

in Fig. 9. For the purpose of this investigation the Mach number around

the shock is assumed uniform at M = 10. In Fig. 10 we show the limits of

stability for 6 as a function of B, In addition we show the stability

result in terms of 6r 0/r 0 as a function of 8 (6r 0/r 0 is geometrically

related to 6 and 6). When either 6 or a becomes too large, the shock front

is transformed into a nonlinear cusp-type regime instead of reverting to

a more spherical form and oscillating. From Fig. l0b we can see that this

is related to the initial perturbation and is a function of 8. In each

case instability is defined to occur if a cusp shock is formed before

r/r 0<10 -2. This arbitrary definition is necessitated by the fact that all

perturbations, given sufficient compression, eventually evolve into the

cusp-shaped form. Realistically speaking, however, compressions of 10 6are

more than sufficient to achieve the compression and temperature rise

necessary for ignition in pellet fusion.

Even for these single cap perturbations, oscillatory behavior is apparent

for sufficiently small initial amplitudes. Let us compare the radius of

the first minimum of the average deviation from a spherical or cylindrical

shock for the cap perturbation to that for Legendre polynominal whose first

zero forms the same angle as the 8 for the cap perturbation. We see from

Fig. 11 that at least for smaller a (i.e., larger Z) the oscillation period

is nearly the same. This indicates that the oscillation period (i.e., the

22



time or radius between minimum deviations from symmetric implosion) can

be reasonably well predicted for arbitrary perturbations by matching to

the lowest order Legendre polynominal which fits the perturbtation. In

Fig. 12 we show a stable case where the behavior about a nearly spherical

implosion is oscillatory up to a compression of r /r = 10. In Fig. 13 we
0

show an unstable case where a cusp is clearly forming after a single over-

shoot of the perturbation and a compression of r 0/r = 4.

From these results we see that two interdependent factors control

when the nonlinear kinks will begin to form. One is the wavelength of

the perturbation and the other is the angle at which the perturbation

intersects the mean radius. The smaller the wavelength, the larger the angle

that is tolerable. Note, however, that this angle and the mode amplitude

are not independent. In terms of amplitude, the shorter the wavelength,

the smaller the amplitude of disturbance that can be tolerated.

23



R22

Fig. 9 - Initial perturbation of a spherical shock may be represented in terms of a cap at one
pole with a radius of curvature smaller than the main shock. The perturbation magnitude 6 R,
intersection half-angle , and deviation angle S are related by geometry.
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Fig. 10(a) - Stability limits for the spherical cap perturbation are
given as a function of the deviation 5 and intersection angle 3
as defined in Fig. 9. Instability is defined to occur when a kink
forms before a compression radius R/R 0 <0.01.
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Fig. 10(b) Stability limits are shown as a function of (6 R/R)0 and
03. These two graphs are connected by simple geometric relations.
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VII. Effect of density variation

Equation (1) was derived assuming a uniform density and temperature

ahead of the shocks. The C-C-W methodology does not require the medium

ahead of the shocks to be uniform, and we shall now investigate the effect

a non-zero density variation in the undisturbed medium. However, we do

not allow the density to increase rapidly enough that the shock decelerates.

This would violate the important assumption that returning characteristics

are negligible.

The compatability relation along the inward-directed characteristic

is given by

a2 d

dp + Padu +ua - =P0 , (50)u+a A

while the Hugoniot relations behind a strong shock (M- w) are given by

2u =--q v
U Y+l

2 -2 -
(51)

y+l

P y+l

a 2 +l) 2

where u is the fluid velocity behind the shock, p is the pressure behind

the shock, P is the density behind the shock, and 5 is the undisturbed

density. Differentiating the relation for p we get

2 v2-

dp-- v dP + - 5 vdv (52)
y+l y+l

29



Combining Eqs. (50-52) we have

2 2d5 + (4 + 2 2) vdv+ 4y -2dA (53)
y+"y+l y+l IyV-1 [2(y+l) + (2(Y-1)] Pv A ,

or

-1 -1
dv _ (y+ 2  +tI) 'A - 2  I) dpv - Y- A (2 - (54)

If we now write this in the form of Eq. (7) we have

S(-/v) - -!/A- C (55)

Using Eqs. (4), (6) and (10) and the relation

pfv - , (56)

we have

(X/v) -V n + K n • Vn p. (57)

Assuming a density profile of the form - r - q the zeroth order

symmetric equation becomes similar to Eq. (15),

(Alr)/r (-i)I . (58)

30



This has a solution analogous to Eq. (18),

r - R (t)\/( +
4

-Zq) (59)

The effect of a positive q (density increasing toward the axis) is to cause

the shock to accelerate more slowly than the q=O case. (A negative q

will cause the shock to accelerate faster).

Again linearizing the equations as in Section 2, we have to first

order

(-Xv 1/V63 - - (70o):(o 0 ) + [K n* 7" 0 n ,j

(60)
-no .(V) 70  n p +n * ( 9.• n 0J

0-00

Using vector manipulations similar to those in Section 2, we obtain

_(X . /v) .- . -o V (n + • (/ro) +

(61)
n~ *VV Zn P

The last term of Eq. (61) adds an additional term to Eq. (29), given by

2o : 70V0 tn = (Qnp) , (62)

where the double prime indicates a derivative with respect to rO.

Thus Eq. (61) becomes

31



- * 2
(Vlv) - (Q--+Kq) /r (63)

00

Now from Eq. (53) we get

d2nv0  - t -1
dr 0  X r0  ,(64)

and using Eq. (30) we have after a little algebraic manipulation

d2 + -K. d_ + = O. (65)dr-0  ro dr0  r0

0 0 0 0

The resulting indicial equation is

X3 (8-1) + (a-r-N) B + (Q-ct-+Kq) = 0, (66)

or

X-a+ Kq + [(0+ -tq) - 4%QJ . (67)

We note from this result that the effect of including density variation

is found to first order by replacing everywhere the term a by I-Kq.

That is, the acceleration normally due to the geometric factor am is modified

by an additional term q related to the acceleration caused by a density

variation. Positive q (density increasing toward the axis) has the effect

of reducing the acceleration due to geometric convergence. For sufficiently

large q the acceleration vanishes. This situation, however, violates the
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assumption in the C-C-W model that the shock system is accelerating. The

ratio of the disturbance amplitude to the zeroth-order radius continues to

satisfy /r t-  , with the frequency appropriately modified. In terms

of the zeroth order radius, however, the growth becomes C/r0-

A positive q thus decreases the relative growth of the shock perturbation

as a function of the shock radius.
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VIII. Conclusions

The C-C-W approximation, which appears to be very accurate for com-

puting converging shock waves, predicts that the converging shock is always

unstable, in the sense that the ratio of the perturbation size to the

average radius diverges at the time of collapse. The cylindrical and

spherical cases differ only quantitatively. The growth rate is only a

power law, however, and therefore is not as serious as an exponential growth.

For mode number greater than unity, the perturbations oscillate in ln t

with a mode-number-dependent period. The amplitude growth, however, is

independent of mode number.

For sufficiently large amplitude the linear behavior breaks down

and the solution develops nonlinearly into a kink form, where a reflected

shock is left behind in the material,serving as a potential loss of shock

energy in the collapsing shock.

34



REFERENCES

Bernstein, I. B., and Book, D. L., Ap. J. 225, 633 (1978)

Chester, W. (1954) Philos. Mag. 45, 1293

Chisnell, R. F. (1955) Proc. R. Soc. London Ser. A 232, 350

Guderley, G. (1942) Luftfahrtforschung 18, 302

Fong, K. and Ahiborn, B. (1979) Phys. Fluids 22 (3), 416

Whitham, G. B. (1957) J. Fluid Mech. 2, 146

Whitham, G. B. (1958) J. Fluid Mech. 4, 337

35




